An Album of Mazda's Rotary Engine Vehicles

Cosmo Sport/Mazda 110S

1967 - 1972

The world's first twin-rotor rotary engine car was launched in May 1967. Its low, streamlined silhouette and futuristic body styling took advantage of the compact rotary engine, and defined the start of the rotary engine era, thrilling customers everywhere. In July of 1968, the improved version of the Cosmo Sport went on sale, featuring an uprated 128PS L10B rotary engine and wheelbase extended by 150mm. Maximum speed of 200km/h and acceleration that covered 400m from a standing start in 15.8sec. excited sports car fans all over the globe. A total of 1,176 units were produced over 5 years.

Major specifications:

■ Length×Width×Height: 4140×1595×1165mm ■ Wheelbase: 2200mm ■ Track (front/rear): 1250/1240mm ■ Vehicle Weight: 940kg ■ Seating Capacity: 2 ■ Engine Type: 10A ■ Displacement: 491cc×2 ■ Maximum Output: 110PS/7000rpm ■ Maximum Torque: 13.3kg-m/3500rpm (JIS gross) ■ Maximum Speed: 185km/h ■ Transmission: 4-speed

Familia Rotary/Mazda R100

1968 - 1973

Development was based on the prototype Mazda RX-85, announced in 1967 at the 14th Tokyo Motor Show. It went on sale in July, 1968. The type 10A rotary engine, proven to be reliable and durable in the Cosmo Sport, was mounted in a fastback, two-door coupe style body designed as a high performance touring car, but with sufficient space to be used as a family car. In 1969, the sedan version—a high-performance family car called the Familia Rotary SS—was added to the lineup. A total of 95,891 units were produced over 5 years.

Major Specifications of the Familia Rotary Coupe:

■ LengthxWidthx Height: 3830×1480×1345mm ■ Wheelbase: 2260mm ■ Track (front/rear): 1200/1190mm ■ Vehicle Weight: 805kg ■ Seating Capacity: 5 ■ Engine Type: 10A ■ Displacement: 491cc×2 ■ Maximum Output: 100PS/7000rpm ■ Maximum Torque: 13.5kg-m/3500rpm (JIS gross) ■ Maximum Speed: 180km/h ■ Transmission: 4-speed

Luce Rotary Coupe/Mazda R130 Coupe

1969 - 1972

This highly refined personal coupe based on the prototype Mazda RX-87, was announced in 1968 at the 15th Tokyo Motor Show. It featured a frontengine, front-wheel-drive configuration and went on sale in October 1969. Its elegantly designed Italian-style body was graced with streamlined curves and shapely sculptured lines, without the then-popular front quarter windows. The type 13A rotary engine generating 126PS at 6000rpm boasted outstanding performance; it was extremely quiet and fit right into the trend of high-speed driving becoming popular at the time.

Major Specifications:

■ LengthxWidthxHeight: 4585×1635×1385mm ■ Wheelbase: 2580mm ■ Track (front/rear): 1330/1325mm ■ Vehicle Weight: 1185kg ■ Seating Capacity: 5 ■ Engine Type: 13A ■ Displacement: 655ccx2 ■ Maximum Output: 126PS/6000rpm ■ Maximum Torque: 17.5kg-m/3500rpm (JIS gross) ■ Maximum Speed: 190km/h ■ Transmission: 4-speed Manual

Capella Rotary/Mazda RX-2

1970 - 1978

Launched as a high-performance model in the mid-sized Capella series and went on sale in May 1970. A newly designed rotary engine, the 12A, was installed and the G series, the world's first rotary engine car with authentic automatic transmission, was added in 1971. The high-performance GSII with its 5-speed manual transmission, was introduced in 1972, and the AP, with its full anti-pollution package, came out in 1974. Winner of the 1972 Import Car-of-the-Year award from Road Test, a popular car magazine in the U.S. at the time.

Major Specifications of the Capella Rotary Coupe:

■ Length×Width×Height: 4150×1580×1395mm ■ Wheelbase: 2470mm ■ Track (front/rear): 1285/1280mm ■ Vehicle Weight: 950kg ■ Seating Capacity: 5 ■ Engine Type: 12A ■ Displacement: 573cc×2 ■ Maximum Output: 120PS/6500rpm ■ Maximum Torque: 16.0kg-m/3500rpm (JIS gross) ■ Maximum Speed: 190km/h ■ Transmission: 4-speed Manual

Savanna/Mazda RX-3

1971 – 1978

A sport sedan and coupe launched in September 1971, with the type 10A rotary engine. In 1972 the fully automatic transmission version, the Sport Wagon, was introduced as the world's first rotary engine wagon. The GT, with its 12A rotary engine and 5-speed manual transmission, was also added. A variety of sport-kits were prepared and contributed to many successful races. In 1973, the AP, with its anti-pollution package, was added. In 1975, the REAPS rotary engine, which achieved lower emissions and better fuel economy, was introduced.

Major Specifications of the Savanna Coupe:

■ Length×Width×Height: 4065×1595×1350mm ■ Wheelbase: 2310mm ■ Track (front/rear): 1300/1290mm ■ Vehicle Weight: 875kg ■ Seating Capacity: 5 ■ Engine Type: 10A ■ Displacement: 491cc×2 ■ Maximum Output: 105PS/7000rpm ■ Maximum Torque: 13.7kg-m/3500rpm (JIS gross) ■ Maximum Speed: 175km/h ■ Transmission: 4-speed

Luce Rotary/Mazda RX-4

1972 – 1977

The second generation Luce, with its 12A rotary engine, was launched in October 1972 and was available in three body styles: hardtop, sedan, and custom. These models led the way into the top sport & luxury markets for rotary engine cars. In 1973, the Luce Wagon and the Grand Turismo with wood-grain panels on the sides, were added. At the same time, additional models with low emission AP versions and 13B rotary engines were prepared. They proved that low emissions and high performance could be compatible.

Major Specifications of the Luce Sedan:

■ Length×Width×Height: 4240×1670×1410mm ■ Wheelbase: 2510mm ■ Track (front/rear): 1380/1370mm ■ Vehicle Weight: 1035kg ■ Seating Capacity: 5 ■ Engine Type: 12A ■ Displacement: 573cc×2 ■ Max. Output: 130PS/7000rpm ■ Max. Torque: 16.5kg-m/4000rpm (JIS gross) ■ Max. Speed: 185km/h ■ Transmission: 5-speed Manual/3-speed Automatic

* Data is taken from the first production models (Japan specification)

Rotary Pickup

1973 - 1977

Marketed exclusively in North America where pick-up trucks enjoyed great popularity, this was the world's first pick-up truck and utility vehicle with a rotary engine. The lightweight and compact rotary engine was durable and fit well in this type of vehicle. Massive front grill, boxy body, large mirrors, extruded fenders, and wide tires were well-suited to the tastes of American pickup buyers. This was a unique rotary engine vehicle, not sold in Japan.

Major Specifications:

Not available, vehicle marketed exclusively in North America.

Parkway Rotary 26

1974 – 1976

The world's first rotary engine bus, launched in July 1974 and equipped with the 135PS maximum power 13B rotary engine, offered a cruising speed of 120km/h with a pleasantly smooth ride, low noise and little vibration, thanks to the inherent benefits of the rotary engine. Two models were available: a 26-passenger Deluxe version with optional air-conditioning operated by a sub-engine, and the 13-passenger Super-Deluxe version, with full luxury equipment. This was a unique model that showed the rotary engine was not solely for passenger cars.

Major Specifications:

- LengthxWidthxHeight: 6195×1980×2290mm Wheelbase: 3285mm Track (front/rear): 1525/1470mm Vehicle Weight: 2885kg Seating Capacity: 26 Engine Type: 13B Displacement: 654cc×2 Maximum Output: 135PS/6500rpm Maximum Torque: 18.3kg-m/4000rpm (JIS gross) Maximum Speed: 120km/h Transmission: 4-speed
- Roadpacer AP

A full-size sedan launched in March 1975, with some body parts and mechanical components supplied by GM-Holden of Australia. The engine was Mazda's 13B RE. Anticipating the era of international joint operations, this project aimed at lowering costs and raising quality through shortened development periods; it saved its tooling investment for the small-volume, premium market. The Roadpacer AP was mainly sold as a chauffeur-driven saloon for company executives, but was also attractive as a high-class personal car. 800 units were produced over three years.

Major Specifications

■ Lengthx-Width×Height: 4850×1885×1465mm ■ Wheelbase: 2830mm ■ Track (front/rear): 1530/1530mm ■ Vehicle Weight: 1575kg ■ Seating Capacity: 5 ■ Engine Type: 13B ■ Displacement: 654cc×2 ■ Maximum Output: 135PS/6000rpm ■ Maximum Torque: 19.0kg-m/4000rpm (JIS gross) ■ Maximum Speed: 165km/h ■ Transmission: 3-speed Automatic

Cosmo AP/Mazda RX-5

1975 – 1981

This highly refined specialty car was launched in October 1975. Named after the Cosmo Sport, Mazda's first commercialized rotary engine car, the Cosmo AP was available with both the 12A and 13B rotary engines with low-emissions package, and 10 optional variations were offered to customers. In 1977, Cosmo L, the Japan-first Landau-top model, was added. A commercial film, "Red Cosmo," became wildly popular, and this model became an image leader for developing the high-performance specialty car market in Japan.

Major Specifications of the Cosmo AP:

- LengthxWidthxHeight: 4545×1685×1325mm Wheelbase: 2510mm Track (front/rear): 1380/1370mm Vehicle Weight: 1220kg Seating Capacity: 5 Engine Type: 13B
- Displacement: 654cc×2 Maximum Output: 135PS/6000rpm Maximum Torque: 19.0kg-m/4000rpm (JIS gross) Transmission: 5-speed Manual/3-speed Automatic

Luce Legato/Mazda 929L

1977 – 1981

Launched in October 1977 as the top of the Luce series. The Luce Legato's development concepts were high quality, grace, and distinction. Two rotary engine options, type 13B with 135PS and 12A with 125PS, were available. Two body styles, the 4-door Pillared Hardtop and the 4-door Sedan, were also offered. To meet various market segments, Mazda offered 3 versions and 10 types for the Pillared Hardtop, 4 versions and 10 types for the Sedan, and 3 types (with manual, automatic, and column-shift automatic transmission) for the top version, the 13B-powered Limited.

Major Specifications of the Luce Legato 4-door Hardtop:

- Length×Width×Height: 4625×1690×1385mm Wheelbase: 2610mm Track (front/rear): 1430/1400mm Vehicle Weight: 1225kg Seating Capacity: 5 Engine Type: 13B Displacement: 654cc×2 Maximum Output: 135PS/6000rpm Maximum Torque:
- Displacement: 654cc×2 Maximum Output: 135FS/6000rpm Maximum Torque 19.0kg-m/4000rpm (JIS gross) Transmission: 5-speed Manual/3-speed Automatic

Savanna RX-7/Mazda RX-7

1978 – 1985

The first generation RX-7 was launched in March 1978. The front mid-ship layout with an improved 12A engine and the then-unique retractable headlights helped realized an aerodynamic body design. This model became extremely popular not only in Japan but also in North America. A face-lift was made in 1980, the new 6PI engine was installed in 1981, and the 12A turbo rotary engine, which developed 165PS added in 1983.

Major Specifications:

- Length×Width×Height: 4285×1675×1260mm Wheelbase: 2420mm Track (front/rear): 1420/1400mm Vehicle Weight: 1005kg Seating Capacity: 4 Engine Type: 12A
- Displacement: 573cc×2 Maximum Output: 130PS/7000rpm Maximum Torque: 16.5kg-m/4000rpm (JIS gross) Transmission: 5-speed Manual/3-speed Automatic

Cosmo

The third-generation Cosmo, launched in October 1981, was developed as a high-end personal car to meet the requirements of the day. Three body variations were offered: 2-door and 4-door hardtops, and saloon. The 6PI type 12A rotary engine was originally installed; type 13B, with its electronically controlled super-injection system, and type 12A with the Impact-Turbo, the world's first turbo rotary engine, were added later. Equipped with four-wheel independent and electronically controlled suspension, the Cosmo was fast and a pure pleasure to drive.

1981 – 1990

Major Specifications of the Cosmo 2-door Hardtop:

■ Length×Width×Height: 4640×1690×1340mm ■ Wheelbase: 2615mm ■ Track (front/rear): 1430/1425mm ■ Vehicle Weight: 1170kg ■ Seating Capacity: 5 ■ Engine Type: 12A ■ Displacement: 573cc×2 ■ Maximum Output: 130PS/7000rpm ■ Maximum Torque: 16.5kg-m/4000rpm (JIS gross) ■ Transmission: 5-speed Manual/3-speed Automatic

Luce/Mazda 929 1981 – 1986

The 3rd generation Luce was launched in October 1981, at the same time as the Cosmo. The series included a 4-door sedan and a hardtop, powered by a 2.0-liter reciprocating or a 12A rotary engine. Like the Cosmo, the rotary engine model employed Mazda's first 4-wheel independent suspension system. Later, the Luce underwent a major face-lift and got an extensively modified nose and rear end. The new top range models, powered by a turbochaged 12A or dynamic supercharger-equipped 13B rotary engine, became popular in the market as a luxury car with performance and elegance.

Major Specifications of the Luce 4-door Hardtop:

■ Length-Width×Height: 4640×1690×1360mm ■ Wheelbase: 2615mm ■ Track (front/rear): 1430/1420mm ■ Vehicle Weight: 1165kg ■ Seating Capacity: 5 ■ Engine Type: 12A ■ Displacement: 573cc×2 ■ Maximum Output: 130PS/7000rpm ■ Maximum Torque: 16.5kg-m/4000rpm (JIS gross) ■ Transmission: 5-speed Manual/3-speed Automatic

Savanna RX-7/Mazda RX-7 1985 – 1992

The second-generation RX-7 was launched in October 1985, with further upgraded styling and dynamic performance. The 13B rotary engine with Twin-Scroll Turbo and intercooler developed maximum power of 185PS. Mazda's unique multi-link rear suspension with toe-control capability also came as standard. The interior was designed with a perfect blend of harmony, beauty, and sportiness; the result was a "matured" sports car. In 1987, the Cabriolet was added; in 1989, the engine's maximum output was raised to 205PS.

Major Specifications

■ LengthxWidthxHeight: 4310x1690x1270mm ■ Wheelbase: 2430mm ■ Track (front/rear): 1450/1440mm ■ Vehicle Weight: 1240kg ■ Seating Capacity: 4 ■ Engine Type: 13B turbo ■ Displacement: 654ccx2 ■ Maximum Output: 185ps/6500rpm ■ Maximum Torque: 25.0kg-m/3500rpm (JIS net) ■ Transmission: 5-speed Manual/4-speed Automatic

Luce 1986 – 1991

The fifth-generation Luce, launched in September 1986, was designed to couple the luxury of the top-end sedan with the sportiness of the rotary engine. The powerful turbocharged 13B rotary engine, with its 180PS maximum power, was installed. Combined with a newly developed automatic transmission, it realized smoother and quicker acceleration. The highly rigid monocoque body featured struts for the front and Mazda's unique E(Multi)-link suspension for the rear. It thus resulted in a high level of compatibility between performance and comfort as a luxury saloon.

Major Specifications

■ Length×Width×Height: 4690×1695×1395mm ■ Wheelbase: 2710mm ■ Track (front/rear): 1440/1450mm ■ Vehicle Weight: 1500kg ■ Seating Capacity: 5 ■ Engine Type: 13B turbo ■ Displacement: 654cc×2 ■ Maximum Output: 180PS/6500rpm ■ Maximum Torque: 25.0kg-m/3500rpm ■ Transmission: 4-speed Automatic

Eunos Cosmo 1990 – 1995

The Eunos Cosmo, launched in April 1990, was the world's first series-production car with a 3-rotor rotary engine, the type 20B-REW with Sequential Twin Turbo system, developing maximum power of 280PS in a smooth and responsive manner. The body was exclusively designed for the "full-size" category in Japan, The cabin was spaced as a luxury 2 plus 2, and interior materials—leather and wood—were carefully selected at the raw material stage. The engine, suspension automatic transmission, and air-conditioning system were all electronically controlled.

Major Specifications:

- Length×Width×Height: 4815×1795×1305mm Wheelbase: 2750mm Track (front/rear): 1520/1510mm Vehicle Weight: 1610kg Seating Capacity: 4 Engine Type: 20B-REW Displacement: 654cc×2 Maximum Output: 280PS/6500rpm Maximum Torque: 41.0kg-m/3000rpm (JIS net) Transmission: 4-speed Automatic
- Mazda RX-7 1991 2002



The third-generation RX-7, launched in December 1991, featured a powerful and responsive 13B-REW rotary engine with Sequential Twin-Turbo and a superbly beautiful body silhouette. All-wheel double-wishbone suspension with newly developed dynamic geometry control mechanism was standard on all models. Developed as a pure sports car, it pursued the ultimate in driving pleasure. Face lifts came in 1996 and in 1998, and the maximum output of the 13B REW was boosted to 280PS for enhanced sports-car pleasure.

Major Specifications:

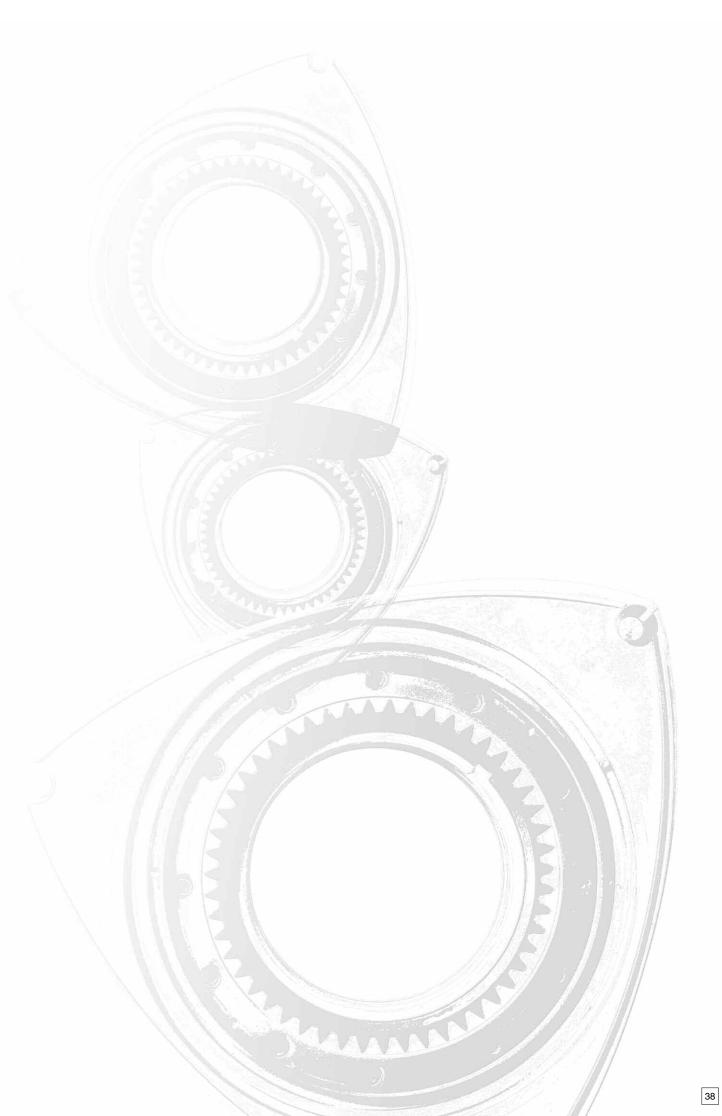
■ Length×Width×Height: 4295×1760×1230mm ■ Wheelbase: 2425mm ■ Track (front/rear): 1460/1460mm ■ Vehicle Weight: 1250kg ■ Seating Capacity: 4 ■ Engine Type: 13B-REW ■ Displacement: 654cc×2 ■ Maximum Output: 255PS/6500rpm ■ Maximum Torque: 30.0kg-m/5000rpm (JIS net) ■ Transmission: 5-speed Manual/4-speed Automatic

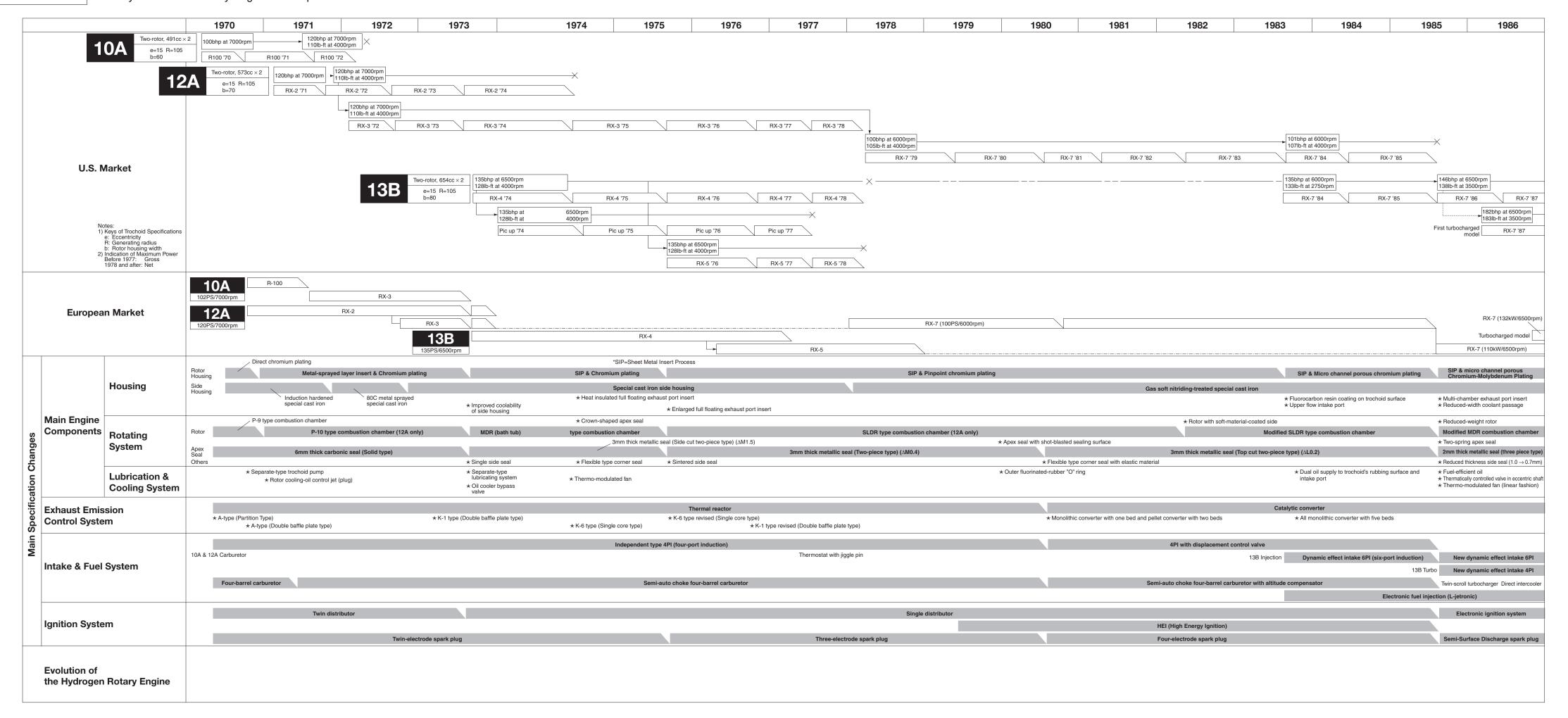
RX-8 2003 - present

The RX-8, which debuted in April 2003, comes equipped with the new-generation RENESIS rotary engine. Though naturally aspirated, the new REN-ESIS maximizes the benefits of the rotary engine, while being more compact, lighter and higher performing than its predecessors. It also provides more cabin space, accommodating up to four adults in comfort. The RX-8 is a 4-door, 4-seat sports car with innovative styling. As a new-concept genuine sports car with high levels of environmental and safety performance, the RX-8 has garnered many awards, including the 2004 RJC Car of the Year Award, and enjoys considerable popularity among the car-buying public.

Major Specifications:

■ Length×Width×Height: 4435×1770×1340mm ■ Wheelbase: 2700mm ■ Track (front/rear): 1500/1505mm ■ Vehicle Weight: 1310kg ■ Seating Capacity: 4 ■ Engine Type: 13B-MSP ■ Displacement: 654cc×2 ■ Maximum Output (Net): 250PS/8500rpm ■ Maximum Torque (Net): 22.0kg/3000rpm ■ Transmission: 6-speed Manual


RX-8 Hydrogen RE 2004 - present


The hydrogen-fuelled RX-8 Hydrogen RE started running on public roads in Japan on receiving approval from the Ministry of Land, Infrastructure and Transport in October 2004. With zero CO2 emissions, the hydrogen rotary engine exhibits exceptional environmental performance while retaining the characteristic-driving feel of an internal combustion engine. To enable the RX-8 Hydrogen RE to run in areas not yet provided with hydrogen filling stations, the engine uses a dual-fuel system that switches between hydrogen and gasoline fuel modes. The base model RX-8 remains unchanged, assuring seating capacity for four as well as highly practical on-board equipment. The RX-8 Hydrogen RE, which is leased to businesses and local governments, is gaining a favourable reputation and spurring research and development towards the realization of a hydrogen energy society.

Major Specifications:

- Length×Width×Height: 4435×1770×1340mm Wheelbase: 2700mm Track (front/rear): 1500/1505mm ■ Vehicle Weight: 1460kg ■ Seating Capacity: 4 ■ Engine Type: 13B
- Displacement: 654cc×2 Maximum Output (Net): Hydrogen 109PS, Gasoline 210PS
- Maximum Torque (Net): Hydrogen 14.3kg-m, Gasoline 22.6kg-m Transmission: 4-speed Automatic ■ Fuel: Hydrogen/gasoline dual-fuel system

History of Mazda's Rotary Engine Development

	1987	1988	1989	19	990 1	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	20
			-			'	-			1					,	<u> </u>			,			
																		RENESIS 6-port engine				
																		184kW (250PS)/8500rj 216N-m (22.0kg-m)/55			DENESIS 6 port ongino	
U.S. Market																		RENESIS 4-port engine			RENESIS 6-port engine 158kW (215PS)/7450rpm 216N-m (22.0kg-m)/5500rpm	
			160bhp at 7000rpm 140lb-ft at 4000rpm			\longrightarrow												154kW (210PS)/7200r	pm		216N-m (22.0kg-m)/5500rpm	
	RX-7 '87	RX-7 '88	RX-7 '89	RX-7 '90	RX-7 '91													222N-m (22.6kg-m)/50	lourpm			
			200bhp at 6500rpm		V	255bhp at 6	6500rpm											RX-8 '03				
Notes:			200bhp at 6500rpm 196lb-ft at 4000rpm			217lb-ft at 5	5000rpm			*												
Notes: 1) Keys of Trochoid Specifications e: Eccentricity R: Generating radius b: Rotor housing width 2) Indication of Maximum Power Before 1977: Gross 1978 and after: Net	RX-7 '87	RX-7 '88	RX-7 '89	RX-7 '90	RX-7 '91		RX-7 '93		RX-7 '94	RX-7 '95												
R: Generating radius b: Rotor housing width																						
Before 1977: Gross 1978 and after: Net																						
																		RENESIS 6-port 6				
																		RX-8 (177kW)				
European Market																		RENESIS 4-port 6				
																			. ,			
	I DV-7	(122k\M/6500rpm)		DV-7	7 (1/7k\M/6500rpm)			DV-7 (176k\N/6	SEOOrnm)													
		(132kW/6500rpm)		RX-7	7 (147kW/6500rpm)			RX-7 (176kW/6	6500rpm)													
		(132kW/6500rpm) (110kW/6500rpm)		RX-7	7 (147kW/6500rpm)			RX-7 (176kW/6	5500rpm)													
		• , ,		RX-7	7 (147kW/6500rpm)			RX-7 (176kW/6		ro channel porous Chromium	olybdenum Plating											
Housing		• , ,		RX-7	7 (147kW/6500rpm)			RX-7 (176kW/6	SIP & micr	ro channel porous Chromium												
Housing		• , ,			7 (147kW/6500rpm)	* Graphi	hite coating on trochoid	RX-7 (176kW/6	SIP & micr													
		• , ,	* Ion-nitrided stationary	gear gear			hite coating on trochoid ce	RX-7 (176kW/6	SIP & micr													
nin Engine	RX-7	• , ,	★ Ion-nitrided stationary ★ Ion-nitrided rotor gear	gear gear	Improved precision in b	bearing clearance *	hite coating on trochoid ce mpression MDR combustion		SIP & micr									Lightweight rotor with I	MDR combustion chamber			
nin Engine	RX-7	(110kW/6500rpm)		gear , thin and light rotor La	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove *			SIP & micr										MDR combustion chamber			
ain Engine	RX-7	(110kW/6500rpm)		gear , thin and light rotor La	Improved precision in b	bearing clearance * High-precision and com apex seal groove *			SIP & micr									Lightweight rotor with I				
ain Engine omponents Rotating System	RX-7	(110kW/6500rpm)		gear , thin and light rotor La 2n	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct	mpression MDR combustion		SIP & micr		I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zle			2mm thick metal seal ★ Twin direct oil supply	I (two piece type) system			
ain Engine omponents Rotating System	RX-7	(110kW/6500rpm)	★ lon-nitrided rotor gear	gear , thin and light rotor La 2n	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi	mpression MDR combustion It oil injection to trochoid's ng surface oil pan with inner bulge	chamber	SIP & micr		I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zie			2mm thick metal seal	I (two piece type) system			
ain Engine omponents Rotating System	RX-7	(110kW/6500rpm)	★ lon-nitrided rotor gear	gear , thin and light rotor La 2n	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi	mpression MDR combustion	chamber	SIP & micr	as soft nitriding-treated spec	I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zle			2mm thick metal seal ★ Twin direct oil supply	I (two piece type) system			
ain Engine omponents Rotating System Lubrication & Cooling System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear	gear , thin and light rotor La 2n ed metering oil pump	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubblin * Thir oe * Three-	mpression MDR combustion at oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr		I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zie			2mm thick metal seal ★ Twin direct oil supply ★ Ultrathin oil pan with i	I (two piece type) system inner bulge			
ain Engine omponents Rotating System Lubrication & Cooling System	Modified MDR c	(110kW/6500rpm)	★ lon-nitrided rotor gear	gear , thin and light rotor La 2n ed metering oil pump	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubblin * Thir oe * Three-	mpression MDR combustion It oil injection to trochoid's ng surface oil pan with inner bulge	chamber	SIP & micr	as soft nitriding-treated spec	I cast iron	controlled M.O. oil supply system	*	k High response metering oil noz	zle			2mm thick metal seal ★ Twin direct oil supply	I (two piece type) system inner bulge			
lain Engine omponents Rotating System Lubrication & Cooling System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear	gear , thin and light rotor La 2n ed metering oil pump	Improved precision in b aser beam hardening of rotor a	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubblin * Thir oe * Three-	mpression MDR combustion at oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	as soft nitriding-treated spec	I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zie			2mm thick metal seal ★ Twin direct oil supply ★ Ultrathin oil pan with i	I (two piece type) system inner bulge			
Rotating System Lubrication & Cooling System khaust Emission Control System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear	gear , thin and light rotor La 2n ed metering oil pump	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubblin * Thir oe * Three-	mpression MDR combustion at oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	as soft nitriding-treated spec	I cast iron	controlled M.O. oil supply system	*	k High response metering oil noz	zle			2mm thick metal seal ★ Twin direct oil supply ★ Ultrathin oil pan with i	system inner bulge			
Rotating System Lubrication & Cooling System thaust Emission Control System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear	gear thin and light rotor La 2n ed metering oil pump	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three-	mpression MDR combustion It oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	as soft nitriding-treated spec	I cast iron	controlled M.O. oil supply system	*	r High response metering oil noz	zle			2mm thick metal seal ★ Twin direct oil supply ★ Ultrathin oil pan with i ★ Electric secondary air	system inner bulge			
Rotating System Lubrication & Cooling System thaust Emission Control System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic of	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three-	mpression MDR combustion at oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	cas soft nitriding-treated spec	t cast iron ★ 2-stage electronically	controlled M.O. oil supply system		k High response metering oil noz	zle			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air	system inner bulge			
Rotating System Lubrication & Cooling System thaust Emission Control System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three-	mpression MDR combustion It oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	as soft nitriding-treated spec	t cast iron ★ 2-stage electronically	controlled M.O. oil supply system			zle			2mm thick metal seal ★ Twin direct oil supply ★ Ultrathin oil pan with i ★ Electric secondary air	system inner bulge			
ain Engine Emponents Rotating System Lubrication & Cooling System khaust Emission Control System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three- * Metal of ceffect intake 4PI * Seque * EGI-HS	t oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	cas soft nitriding-treated spec	★ 2-stage electronically	controlled M.O. oil supply system			zie			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air	system inner bulge			
Rotating System Lubrication & Cooling System Chaust Emission Control System take & Fuel System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three- * Metal of ceffect intake 4PI * Seque * EGI-HS	t oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan	chamber	SIP & micr	Catalytic converte	tronic)	controlled M.O. oil supply system			zle			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air Sequential Dynamic of the secondary air EGI (L-jetronic)	system inner bulge r pump			
Rotating System Lubrication & Cooling System Chaust Emission Control System take & Fuel System	Modified MDR c	(110kW/6500rpm)	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin * Thin oi * Three- * Metal of ceffect intake 4PI * Seque * EGI-HS	et oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan I catalytic converter	chamber	SIP & micr	Catalytic converte Catalytic converte Electronic fuel injection (D-	tronic)	controlled M.O. oil supply system			zle			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air Sequential Dynamic EGI (L-jetronic) * 32bit Single-electrode span	system inner bulge r pump			
ain Engine omponents Rotating System Lubrication & Cooling System khaust Emission Control System take & Fuel System	Modified MDR c	ombustion chamber effect intake 6PI	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbins * Thin oi * Three- * Metal of c effect intake 4PI	toil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan I catalytic converter	chamber	SIP & micr	Catalytic converte Catalytic converte Electronic fuel injection (D- Electronic ignition sys (Microcomputer control	tronic) ★ 2-stage electronically ★ 16bit	controlled M.O. oil supply system			zle			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air Sequential Dynamic EGI (L-jetronic) * 32bit Single-electrode spal * Iridium-tip	system inner bulge r pump			
ain Engine omponents Rotating System Lubrication & Cooling System khaust Emission Control System take & Fuel System nition System	Modified MDR c	ombustion chamber effect intake 6PI	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin. * Thin oi * Three- * Metal of * Seque * EGI-HS * Cranks * Platinu Super air-gap HR-X concept c (equipped with I rotary engine) rotary engine)	to oil injection to trochoid's ng surface oil pan with inner bulge e-stage controlled electric fan I catalytic converter ential twin turbo system kshaft angle sensor num-tip spark plug p spark plug car Roadster bydrogen (MX-5/Miata expe	chamber	SIP & micr	Catalytic converte Catalytic converte Electronic fuel injection (D- Electronic ignition sys (Microcomputer control	tronic) ★ 2-stage electronically ★ 16bit	controlled M.O. oil supply system			zie			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air Sequential Dynamic EGI (L-jetronic) * 32bit Single-electrode span	system inner bulge r pump Air Intake 6PI			
Main Engine components Rotating System Lubrication &	Modified MDR c	ombustion chamber effect intake 6PI	* Ion-nitrided rotor gear * Electronically-controlle * Double layered cataly * Independent twin-screen	gear thin and light rotor La 2n ed metering oil pump tic converter Variable dynamic e	Improved precision in b aser beam hardening of rotor a mm thick metal seal (three p	bearing clearance * High-precision and com apex seal groove * piece type) * Direct rubbin. * Thin oi * Three- * Metal of c effect intake 4PI * Seque * EGI-HS * Cranks * Platinu Super air-gap HR-X concept of (equipped with I rotary engine) October 1991	to oil injection to trochoid's ng surface oil pan with inner bulge stage controlled electric fan I catalytic converter I catalytic converter I catalytic sensor num-tip spark plug p spark plug Car Roadster hydrogen (MX-5/Miata exper	chamber HR-X2 c erimental (equippe l vith engine)	SIP & micr	Catalytic converte Catalytic converte Electronic fuel injection (D. Electronic ignition sys (Microcomputer control Capella Cargo (experimental vehicle with hydrogen rotary	tronic) ★ 2-stage electronically ★ 16bit				zie			2mm thick metal seal * Twin direct oil supply * Ultrathin oil pan with i * Electric secondary air Sequential Dynamic EGI (L-jetronic) * 32bit Single-electrode span * Iridium-tip RX-8 Hydrogen RE	system inner bulge r pump Air Intake 6PI		RX-8 Hydrogen RE launched of public roads with approval cture and Transport.	on limited re

Mazda Rotary Engine: Chronological Table

Date		Date	
1588	Ramelli invented the first rotary piston type water pump.	Feb. 1973	Mazda's rotary engine car cleared the U.S. 1975 emission standards, and this
1636	Pappenheim invented a gear type pump.	May 1973	fact was confirmed by EPA test. Luce AP (REAPS-2) was the first vehicle approved under the anti-pollution incentive tax in Japan.
1769	James Watt invented the first rotary steam engine.	Jun. 1973 Dec. 1973	Cumulative production of rotary engine cars reached 500,000 units. The Luce AP Grand Tourismo powered by 13B engine was introduced.
1799	Murdock also invented a rotary steam engine and succeeded in generating power.	Jul. 1974	The Parkway Rotary 26 was introduced.
1901	Cooley manufactured a rotary steam engine in which both inner and outer rotors rotate.	Mar. 1975 Oct. 1975	The Roadpacer was introduced. The Cosmo AP was introduced featuring a low emission rotary engine with
1908	Umpleby advanced Cooley's steam engine into a rotary type internal combustion engine.	Jul. 1977	40% improved fuel-efficiency. Cosmo L Landau top was introduced.
1923	Wallinder, Skoog, and Lundby announced their joint research on the rotary engine.	Oct. 1977	Luce Legato was introduced.
1938	Sensaud de Lavou further advanced the rotary theory.	Mar. 1978 Nov. 1978	The Savanna RX-7 was introduced. Cumulative production of rotary engine cars reached 1,000,000 units.
1943	Maillard devised a compressor by applying the rotary theory.	Oct. 1981	The New Cosmo and Luce Rotary were introduced.
1951	Felix Wankel collaborated with NSU to promote his rotary engine research and development.	Aug. 1982	The world's first turbo-charged rotary engine model was added to the Luce/Cosmo (929) series.
1957	Wankel/NSU built a prototype DKM rotary engine.	Sep. 1983	The RX-7 was face-lifted and the world-first turbo rotary engine model was added.
1958	Wankel/NSU built a prototype KKM rotary engine.	Oct. 1985	The RX-7 was entirely redesigned.
Jul. 1959	Wankel completed the type KKM250 rotary engine.	Apr. 1986	Cumulative production of rotary engine cars reached 1,500,000 units.
Jan. 1960	Wankel/NSU tested their rotary engine in public.	Sep. 1986	The Luce was entirely redesigned.
Jul. 1961 Nov. 1961	Mazda made a technical contract with NSU and Wankel. Mazda completed its own first prototype rotary engine.	Apr. 1990	The Eunos Cosmo debuted featuring the world's first three-rotor rotary engine (20B-REW).
Apr. 1963	Mazda organized Rotary Engine Research Department.	Jun. 1991 Oct. 1991 Dec. 1991	The Mazda 787B achieved overall win at the 59th Le Mans 24 Hours race. The HR-X concept car (with hydrogen RE) was unveiled at the Tokyo Motor Show. The RX-7 was completely redesigned (with a 255PS 13B-REW unit).
Sep. 1964	A prototype sports car powered by a rotary engine is unveiled at the Tokyo Motor Show.	Oct. 1993	The HR-X2 concept car (with hydrogen RE) was unveiled at the Tokyo Motor Show.
May 1967	Mazda announced the completion of the rotary engine. The Cosmo Sport was introduced into the domestic market.	May 1995 Oct. 1995	First public road trials of a hydrogen RE vehicle in Japan. The RX-01 concept car (powered by a type MSP-RE experimental engine)
Jul. 1968	The Familia Rotary Coupe was introduced.		was unveiled at the Tokyo Motor Show.
Sep. 1969	Mazda exported rotary engine cars for the first time (to Australia and Thailand).	Jan. 1996	The RX-7 was face-lifted (engine output increased to 265PS).
Oct. 1969	The Luce Rotary Coupe (front-wheel-drive) was introduced. Mazda's rotary engine car cleared the US Federal Government emissions test.	Dec. 1998	The RX-7 was face-lifted (engine output increased to 280PS).
Apr. 1970	Mazda received award from Japanese Mechanical Engineering Society for the commercialization of the rotary engine.	Oct. 1999	The RX-EVOLV concept car with the RENESIS experimental engine was unveiled at the Tokyo Motor Show.
May 1970 Jun. 1970	Export of rotary engine cars to Europe (Switzerland) started. The Capella Rotary (powered by 12A unit) was introduced. Export of rotary engine cars to the United States started.	Oct. 2001	A design prototype of the Mazda RX-8 (powered by the RENESIS) was unveiled at the Tokyo Motor Show.
Dec. 1970	Cumulative production of rotary engine cars reached 100,000 units.	Apr. 2003	The Mazda RX-8 (with the RENESIS) introduced.
Sep. 1971 Oct. 1971	The Savanna Rotary was introduced. Cappella G, the first rotary-powered automobile with an automatic	Oct. 2003	RX-8 Hydrogen RE (development vehicle) was unveiled.
	transmission, was introduced. Cumulative production of rotary engine cars reached 200,000 units.	Oct. 2004	RX-8 Hydrogen RE trials began on public roads with approval from the Ministry of Land, Infrastructure and Transport.
Jan. 1972 Oct. 1972	The Capella Rotary Coupe completed 100,000km endurance run, through eleven European countries and with its engine fully sealed. The first series production car with full emission control package, the Luce	Feb. 2006	RX-8 Hydrogen RE launched on limited release basis
Jul. 13/2	Rotary was introduced.		

History of Mazda's Motor Sports Activities

Da	te	Event	Model	Result			
968	Aug.	Marathon de la Route 84-hour	Cosmo 110S	4th overall			
969	Apr.	Singapore Grand Prix (Touring car race)	R 100 coupe	1st overall			
	Jul.	Spa-Francorchamps 24-hour	R 100 coupe	5th, 6th overall			
	Aug.	Marathon de la Route 84-hour	R 100 coupe	5th overall			
	Nov.	All Japan Suzuka Automobile race (Grand Cup)	R 100 coupe	1st overall			
970	Jun.	RAC Tourist Trophy	R 100 coupe	8th, 10th, 12th overall			
	Jul.	West Germany Touring-car Grand Prix	R 100 coupe	4th, 5th, 6th overall			
	Jul.	Spa-Francorchamps 24-hour	R 100 coupe	5th overall			
971	Jul.	Fuji 1000km	RX-2	1st class, 3rd overall			
	Dec.	Fuji Tourist Trophy	RX-3	1st overall			
972	May	Japan Grand Prix (T-b race)	RX-3	1st, 2nd, 3rd overall			
	Aug.	All Japan Suzuka 300km Touring car	RX-3	1st overall			
	'72	Fuji Grand Champion series (super touring car class)	RX-3	Champion			
973	May	Japan Grand Prix (TS-b race)	RX-3	1st overall			
	Aug.	Suzuka Great 20 Drivers (T-race)	RX-3	1st overall			
	'73	Fuji Grand Champion series (super touring car class)	RX-3	Champion			
974	Sep.	Fuji Inter 200 mile	Sigma GC73•Mazda	2nd overall			
	Dec.	Fuji Tourist Tropy	RX-3	1st overall			
975	May	Japan Grand Prix (TS/GTS-B race)	RX-3	1st overall			
	Oct.	Fuji Masters 250km race (Super T & GT-B race)	RX-3	1st overall			
	'75	Fuji Grand Champion series (super T & GT class)	RX-3	Champion			
976	May	Japan Grand Prix (TS/GTS-B race)	RX-3	1st overall (RX-3's 100th win in domestic races)			
	Sep.	Fuji Inter 200 mile (super T & GT race)	RX-3	1st overall			
	'76	Fuji Grand Champion series (super T & GT class)	RX-3	Champion			
977	May	Fuji 1000km	March 75S-Mazda	1st overall			
	Sep.	Fuji Inter 200 mile	March 76S•Mazda	1st overall			
	Dec.	Fuji 500 mile	March 75S•Mazda	1st overall			
	'77	Fuji Grand Champion Series (ST race)	RX-3	Champion			
		Fuji Long-distance series	March 75S-Mazda	Champion			
978	May	Japan Grand Prix (TS/GTS-B race)	RX-3	1st overall			
	Jul.	Fuji 1000km	March 75S•Mazda	1st overall			
	Sep.	Fuji Inter 200 mile	March 76S•Mazda	1st overall			
	Nov.	Fuji Victory 200km	March 75S-Mazda	1st overall			
	'78	Fuji Long-distance series	March 75S•Mazda	Champion			
979	Feb.	IMSA Daytona 24-hour	RX-7	1st, 2nd in GTU (5th, 6th overall)			
	Apr.	Fuji 500km	March 76S-Mazda	1st overall			
	Sep.	Fuji Inter 500 mile	MCS-Mazda	1st overall			
	Oct.	Fuji Masters 250km	KR-1•Mazda	1st overall			
	'79	British Saloon Car Championship (1600 ~ 2300cc)	RX-7	Champion			

[●] WEC=World Endurance Championship ● WRC=World Rally Championship ● ERC=European Rally Championship ● WSPC=World Sport Prototype Car Championship

[●] SWC=Sportcar World Championship ● ■ =series champion

Date		Event	Model	Result			
1980	Mar.	Fuji 300km Speed	MCS-Mazda	1st overall			
	Sep.	Fuji Inter 200 mile	KR-1•Mazda	1st overall			
	'80	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')			
		IMSA series RS class	RX-3	Champion (Manufacturers')			
		British Saloon Car Championship (1600 ~ 2300cc)	RX-7	Champion			
1981	Apr.	Suzuka 500km	KR-1•Mazda	1st overall			
	'81	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')			
		SCCA Pro Rally series	RX-7	Champion (Manufacturers' & Drivers')			
		British Saloon Car Championship (1600 ~ 2300cc)	RX-7	Champion			
		Belgium Touring Car Championship	RX-7	Champion			
1982	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTO (4th overall), 1st in GTU (6th overall)			
	Jun.	WEC Le Mans 24-hour	RX7-254	14th overall			
	Jun.	WRC New Zealand Rally	RX-7	1st in class (5th overall)			
	Oct.	WEC Fuji 6-hour	RX-7·254	1st in class (6th overall)			
	'82	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')			
		Australian Endurance championship	RX-7	Champion (Manufacturers' & Drivers')			
1983	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTO (3rd overall), 1st in GTU (12th overall)			
	Jun.	WEC Le Mans 24-hour	Mazda 717C	1st, 2nd in Gp. C-junior (12th, 18th overall)			
	Jun.	Fuji Inter 200 mile	MCS III•Mazda	1st overall			
	'83	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')			
		Australian Endurance championship	RX-7	Champion (Manufacturers' & Drivers')			
1984	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTU (12th overall)			
	Jun.	WRC Acropolis Rally	RX-7	9th overall			
	Jun.	WEC Le Man 24-hour	Mazda Lola T616	1st, 3rd in Gp. C-2 (10th, 12th overall)			
			Mazda 727C	4th, 6th in Gp. C-2 (15th, 20th overall)			
	Jul.	ERC Poland Rally	RX-7	1st overall			
	Jul.	Fuji 1000km	Taku Mazda 83C	1st overall			
	'84	Fuji JSS series	RX-7	Champion			
		IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers') (Fifth consecutive champion—new record in IMSA series)			
		IMSA series GTU class	RX-7	Champion (Drivers')			
		Australian Endurance championship	RX-7	Champion (Manufacturers' & Drivers')			
1985	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTU (12th overall)			
			RX-7	2nd in GTO (11th overall)			
			Mazda Argo JM16	1st in Camel Light (10th overall)			
	May	WRC Acropolis Rally	RX-7	3rd, 6th overall			
	Jun.	WEC Le Mans 24-hour	Mazda 737C	3rd, 6th in Gp. C-2 (19th, 24th overall)			
	Aug.	IMSA series	RX-7	67th win in IMSA series (Breaking Porsche's record of 66 wins)			
	Nov.	WRC RAC Rally	RX-7	9th, 10th overall			
	'85	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')			
		IMSA series Camel Light class	Mazda Argo JM16	Champion (Engine Manufacturers' & Drivers')			
		SCCA Pro Rally series	4WD RX-7	Champion (Manufacturers')			

Dat	ie	Event	Model	Result								
986	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTU (8th overall)								
			Mazda Argo	1st in Camel Light (7th overall)								
	Feb.	Suzuka 500 km	Mazda 757	6th overall (Three-rotor rotary-powered Mazda 757 debuted)								
	Aug.	A specially prepared Mazda RX-7 established a new C/Grand Touring Class land speed record of 238.442 miles per hour in the 38th annual Bonneville National Speed Trials held on the Bonneville Salt Flats in Utah, U.S.A.										
	'86	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')								
		IMSA series Camel Light class	Mazda Argo	Champion (Engine Manufacturers' & Drivers')								
987	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTU (10th overall)								
	Jun.	WSPC Le Mans 24-hour	Mazda 757	7th overall								
	Sep.	WSPC Fuji 1000 km	Mazda 757	7th overall								
	'87	IMSA series GTU class	RX-7	Champion (Manufacturers' & Drivers')								
		IMSA series Camel Light class	Mazda Argo	Champion (Engine Manufacturers' & Drivers')								
988	Feb.	IMSA Daytona 24-hour	RX-7	1st in GTU (15th overall)								
	Apr.	Suzuka 500 km	Mazda 767	7th overall (Four-rotor rotary-powered Mazda 767 debuted)								
	Jun.	WSPC Le Mans 24-hour	Mazda 757	15th overall								
			Mazda 767	17th, 19th overall								
989	Feb.	IMSA Daytona 24-hour	Mazda 767B	5th overall								
			RX-7	1st in GTU (12th overall)								
	Jun.	WSPC Le Mans 24-hour	Mazda 767B	7th, 9th, 12th overall								
	'89	IMSA series GTU class	RX-7/MX-6	Champion (Manufacturers')								
990	Feb.	IMSA Daytona 24-hour	RX-7	2nd in GTO (7th overall)								
			Mazda Argo	1st in Camel Light class (9th overall)								
			RX-7	1st in GTU (12th overall) (Nine-year consecutive winner in GTU since 1982)								
	May	IMSA Heartland Park 2-hour	RX-7	1st overall (1st in GTO) (First time for four-rotor rotary-powered GTO race car)								
	Sep.	IMSA San Antonio 300km	RX-7	1st overall (100 victories overall in IMSA series)								
	'90	IMSA series GTU class	RX-7/MX-6	Champion (Manufacturers')								
991	Feb.	IMSA Daytona 24-hour	RX-7/MX-6	1st in GTU (13th overall)/2nd in GTU (15th overall)								
	Jun.	SWC Le Mans 24-hour	Mazda 787B/787	1st, 6th, 8th overall								
	'91	IMSA series GTO class	RX-7	Champion (Manufacturers' & Drivers')								
992	Feb.	IMSA Daytona 24-hour	RX-7/MX-6	1st in GTU (7th overall)/2nd in GTU (12th overall) (11 consecutive wins in GTU at the Daytona 24-hour)								
	Apr.	Bathurst 12-hour	RX-7	1st, 5th overall								
	May	IMSA GTP class	Mazda RX-792P	3rd, 4th								
	Jun.	IMSA GTP class	Mazda RX-792P	2nd								
993	Jan.	IMSA Daytona 24-hour	RX-7	1st in GTU (12-year consecutive winner in GTU since 1982)								
	Apr.	Bathurst 12-hour	RX-7	1st overall								
994	Apr.	Bathurst 12-hour	RX-7	1st overall (3-year consecutive winner overall)								

Production Units of Rotary Engine Vehicles by Model

Year	110S (Cosmo Sport)	R110 (Familia)	R130 Coupe/RX-4 (Luce)	RX-2 (Capella)	RX-3 (Savanna)	Rotary Pickup	Parkway	Roadpacer	RX-5 (Cosmo)	RX-7	Eunos Cosmo	RX-8	Total units	Cumulative production units
1967	343												343	343
1968	172	6,925											7,097	7,440
1969	159	28,041	542										28,742	36,182
1970	258	31,238	431	34,242									66,169	102,351
1971	126	21,907	3	63,389	33,004								118,429	220,780
1972	118	5,720	10,903	58,433	79,719								154,893	375,673
1973		2,060	77,028	54,962	105,819	2							239,871	615,544
1974			66,998	7,656	29,678	14,364	18						118,714	734,258
1975			41,668	5,960	26,236	113	18	491	12,014				86,500	820,758
1976			13,284	553	9,825	632	8	183	43,792				68,277	889,035
1977			13,480	253	1,606	1,161		126	25,273				41,899	930,934
1978			6,484	240					1,561	72,692			80,977	1,011,911
1979			5,705						5,896	71,617			83,218	1,095,129
1980			4,213						1,108	56,317			61,638	1,156,767
1981			2,292						2,785	55,321			60,398	1,217,165
1982			2,046						4,170	59,686			65,902	1,283,067
1983			1,402						3,026	57,864			62,292	1,345,359
1984			1,349						3,477	63,959			68,785	1,414,144
1985			506						1,062	63,105			64,673	1,478,817
1986			2,533						265	72,760			75,558	1,554,375
1987			633						60	52,204			52,897	1,607,272
1988			1,048						22	34,592			35,662	1,642,934
1989			395						8	37,624			38,027	1,680,961
1990			318							29,411	4,325		34,054	1,715,015
1991										16,623	1,700		18,323	1,733,338
1992										26,899	1,373		28,272	1,761,610
1993										6,801	711		7,512	1,769,122
1994										5,962	435		6,397	1,775,519
1995										5,202	331		5,533	1,781,052
1996										4,762			4,762	1,785,814
1997										3,556			3,556	1,789,370
1998										1,423			1,423	1,790,793
1999										4,151			4,151	1,794,944
2000										2,611			2,611	1,797,555
2001										2,589			2,589	1,800,144
2002										3,903			3,903	1,804,047
2003												60,100	60,100	1,864,147
2004												50,813	50,813	1,914,960
2005												27,837	27,837	1,942,797
2006												23,363	23,363	1,966,160
Cumulative production units	1,176	95,891	253,261	225,688	285,887	16,272	44	800	104,519	811,634	8,875	162,113	1,966,160	1,966,160

List of Awards Related to Mazda's Rotary Engine

Awards	(Country)	Date	Awarded by	Awarded for or as
Masuda Award	(Japan)	Jan. 1968	The Daily Industrial News	Development of the rotary engine
Foreign Car Award for 1968	(U.S.A.)	Feb. 1968	Motor Trend	Putting the world's first 2-rotor rotary engine into mass production
Chugoku Cultural Award	(Japan)	Nov. 1968	The Chugoku Shimbun	Ditto
Commendation by Minister of State for Scienc Technology	e & (Japan)	Apr. 1969	Science and Technology Agency	Ditto
Japan Society for the Promotion of Machine Industries Awards	(Japan)	Oct. 1969	Japan Society for the Promotion of Machine Industries	Development of the rotary engine
JSME MEDAL	(Japan)	Apr. 1970	The Japan Society of Mechanical Engineers (JSME)	Dítto
RX-2 (Capella) '1972 Car of the Year'	(Japan)	Jan. 1972	Motor Fan	The best Japanese passenger car in 1972
RX-2 (Capella) '1972 Car of the Year'	(U.S.A.)	Jan. 1972	Road Test	The best American passenger car in 1972
The Mainichi Industrial Technology Award	(Japan)	Dec. 1972	Mainichi Newspapers	Development of the carbon-based apex seal
Invention Prize	(Japan)	1974	Japan Institute of Invention and Innovation	Development of the forced air-cooled Thermal Reactor
Environmental Prize of Merit	(Japan)	Jun. 1976	Environment Agency	Contribution to reduction of exhaust pollutants
RX-7 (Savanna RX-7) '1979 Car of the Year'	(Japan)	Jan. 1979	Motor Fan	The best passenger car in 1979
RX-7 (Savanna RX-7) 'Car of the Decade'	(Japan)	1980	Motor Fan	The best Japanese passenger car in the last 10 years
Nakagawa Award	(Japan)	May 1982	Society of Automotive Engineers of Japan, Inc.	Research and development of the rorary engine with 6PI
Grand Prize of Local Commendation for Invent	tion (Japan)	Nov. 1984	Japan Institute of Invention and Innovation	Development of the rotary engine with 6PI
Japan Society for the Promotion of Machine Industries Award	(Japan)	Nov. 1984	Japan Society for the Promotion of Machine Industries	Development of the rotary engine with Super Injection, a combination between 6PI and electronically-controlled gas injection (EGI)
JSAE Technological Contribution Prize	(Japan)	Oct. 1985	Society of Automotive Engineers of Japan, Inc.	Putting the rotary engine into practical use
RX-7 1986 'Import Car of the Year'	(U.S.A.)	Jan. 1986	Motor Trend	The 1986 best import passenger car in the U.S.
Commendation by Minister of State for Scienc Technology	e & (Japan)	Apr. 1989	Science and Technology Agency	Development and improvement of a new intake system for the rotary engine
RX-7 (Anfini RX-7) 'RJC Car of the Year'	(Japan)	Dec. 1991	RJC (Automotive Researcher's & Journalists' Conference of Japan)	Best Domestic Vehicle of 1991
Kenichi Yamamoto, Chairman of the Board 'RJC Man of the Year'	(Japan)	Dec. 1991	RJC (Automotive Researcher's & Journalists' Conference of Japan)	Automotive Industry Figure of 1991
RX-7 (Anfini RX-7) 'Import Car of the Year'	(U.S.A.)	Jan. 1993	Motor Trend	Best Import Car of 1993 in the U.S.
Fiscal 1996 Award for Young Engineers	(Japan)	Apr. 1996	The Japan Society of Mechanical Engineers (JSME)	Numerical Study of the Flow Field Inside Rotary Engines
RENESIS 'International Engine of the Year'		May 2003	Engine Technology International	The world's best engine in 2003
RX-8 'RJC Car of the Year'	(Japan)	Nov. 2003	RJC (Automotive Researchers' & Journalists' Conference of Japan)	Best Domestic Vehicle of 2003
RENESIS 'RJC Technology of the Year'	(Japan)	Nov. 2003	RJC (Automotive Researchers' & Journalists' Conference of Japan)	Best Automotive Technology of 2003
RENESIS 'JSME (Japan Society of Mechanical Medal (Technology)'	Engineers) (Japan)	May 2004	Japan Society of Mechanical Engineers	Development of automobile rotary engine with side-exhaust port system